Friday, August 18, 2017

Royal Jelly Boosts Wound Healing


The Royal Jelly Of Bees Is Great At Healing Wounds, And Now We Know Why

By Robin Andrews

When it comes to healing wounds, the things that always sound the most appropriate – and effective – always have fairly technical-sounding names. The US National Institutes for Health (NIH) cite a good few, including “collagen, silicon, chitosan, and hyaluronic acid” wound dressing polymers. They all sound rather sciencey, and are therefore probably quite good.

The technicality of the name of a wound-healing material, however, is not a good indicator of said effectiveness. This is fortunate, as the rather silly-sounding “royal jelly” is also pretty remarkable at healing wounds too, according to a new study in Scientific Reports...

Thursday, August 17, 2017

Korean Acacia Honey Shows Anti-H. pylori Activity

Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity
Abstract

Pharmacogn Mag. 2017 Jul;13(Suppl 2):S170-S173

BACKGROUND:

Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide.

OBJECTIVE:

This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents.

MATERIAL AND METHODS:

The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay.

RESULTS:

Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36-72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori.

CONCLUSION:

Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections.

SUMMARY:

The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfraction. All the solvent extracts and fractions showed antibacterial activity against H. pyloriAbscisic acid exhibited antibacterial activity against H. pylori.

Wednesday, August 16, 2017

Honey, Bee Venom Nanofibers Exhibit Potent Antibacterial Activity

Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity

Nanomedicine (Lond). 2017 Aug 14

AIM:

Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects.

METHODS:

Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity.

RESULTS:

Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility.

CONCLUSION:

The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

Tuesday, August 15, 2017

Move Over, Mānuka? Firm Claims Stingless Bee Honey 'Better for Health and Environment'


By Cheryl Marie Tay, 15-Aug-2017

Honey from a stingless bee species native to the Philippines is being touted as superior to mānuka honey, with a Singapore firm marketing products made from the former...

Monday, August 14, 2017

Honey as Immune Booster for Patients Undergoing Chemotherapy

From the hive: Honey, a novel weapon against cancer
Eur J Med Chem. 2017 Aug 3. pii: S0223-5234(17)30586-X

Nowadays there is a folk medicine branch called apitherapy that aims to treat diseases with bee products, including honey. Honey has long been known for its medicinal and health promoting properties. It encloses numerous types of phytochemicals with high phenolic and flavonoid content, which contribute to its antioxidant and anti-inflammatory activities.

Varieties and variants of polyphenols in honey showed antiproliferative property against several types of cancer. This review focuses on the latest discoveries about the key role of honey in different stages of carcinogenesis, initiation, proliferation and progression, both in vitro and in vivo, as well as on its adjuvant effect in cancer therapy.

Although a possible application of honey and its active compounds as drugs against cancer is still far away from clinical practice, scientific results highlight that they could be used as immune booster for patients undergoing chemotherapy. They showed protective effects against the common exasperating and disabling side effects, mostly mucositis.

Sunday, August 13, 2017

Royal Jelly Suppresses Skin Pigmentation

The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor

BMC Complement Altern Med. 2017 Aug 9;17(1):392

BACKGROUND:

It has been reported that royal jelly would reduce melanin synthesis and inhibit the expression of melanogensis related proteins and genes. In this study, we evaluate the anti-melanogenic and depigmenting activity of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly of Apis mellifera.

METHODS:

In this study, we assesses the 10-HDA whitening activity in comparison with the changes in the intracellular tyrosinase activity, melanin content and melanin production related protein levles in B16F1 melanoma cells after treating with 10-HDA. Furthermore, the skin whitening effect was evaluated by applying a cream product containing with 0.5%, 1% and 2% of 10-HDA onto the skin of mice (C57BL/6 J) for 3 week to observe the effect of DL*-values.

RESULTS:

The results showed that 10-HDA inhibited the MITF protein expression (IC50 0.86 mM) in B16F1 melanoma cells. Western blot analysis revealed that 10-HDA inhibited the activity of tyrosinase and the expression of tyrosinase-related protein 1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF) in B16F1 melanoma cells. In addition, the 10-HDA was applied on the skin of mice show significantly increased the average skin-whitening index (L value).

CONCLUSIONS:

The validation data indicated the potential of 10-HDA for use in suppressing skin pigmentation. The 10-HDA is proposed as a candidate to inhibit melanogenesis, thus it could be developed as cosmetics skin care products.

Saturday, August 12, 2017

Engineered Honey Effective Against Wound Pathogen Biofilms

Use of an engineered honey to eradicate preformed biofilms of important wound pathogens: an in vitro study

J Wound Care. 2017 Aug 2;26(8):442-450

OBJECTIVE:

We previously reported on the ability of SurgihoneyRO (SHRO), an engineered honey, to prevent biofilm formation in vitro, but data were lacking regarding the activity against preformed biofilms. This study aims to assess whether SHRO has any antibacterial activity against mature, preformed biofilms and whether there is any evidence to support the observed clinical effectiveness when SHRO has been used anecdotally on acute and chronic wounds where biofilm is most likely present.

METHOD:

We tested the in vitro antibacterial activity of SHRO against the mature biofilms of 16 clinically relevant wound pathogens, in terms of impacts on biofilm seeding and biofilm biomass. The honey was serially double diluted from 1:3 down to 1:6144, and the lowest dilution achieving a statistically significant reduction in biomass of ≥50%, compared with untreated controls, was recorded.

RESULTS:

All 16 bacterial isolates were susceptible to SHRO, with reduced biofilm seeding observed for all, and percentage reductions ranging from 58% (ACI_C59) to 94.3% (MDR_B) for the strongest concentration of honey (1:3). Furthermore at this concentration, biofilm seeding of the test biofilm was reduced by 80-94.3% (when compared with the positive control) for 12/16 isolates. We additionally demonstrated that SHRO has antibiofilm impacts, with the 24 hour exposure resulting in disruption of the biofilm, reduced seeding and reduced biomass.

CONCLUSION:

SHRO is effective at reducing seeding of preformed biofilms of clinically important wound pathogens in vitro, and also has antibiofilm activity. This supports the anecdotal clinical data for antibiofilm efficacy, and supports the use of SHRO as a promising topical wound care agent.

Friday, August 11, 2017

Bracatinga Honeydew Honey a Natural Source of Bioaccessible Polyphenols



Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys

Food Res Int. 2017 Sep;99(Pt 1):670-678

Honey is a product traditionally consumed due to its possible health benefits promoted by natural antioxidants. However, few studies have evaluated the effect of in vitro gastrointestinal digestion on these compounds in honeys.

To improve the knowledge of this subject, the present study aimed to investigate the influence of simulated digestion on the stability of antioxidant capacity (FRAP, DPPH, and Folin-Ciocalteu assays), phenolic compounds (LC-ESI-MS/MS), and minerals (CE-DAD) in Mimosa scabrella Bentham honeydew honeys.

The results show that the digestive system, mainly after duodenal digestion, significantly decreased the antioxidant capacity assessed by FRAP (410.3±18.3 to 564.7±8.4μmolFe+2100g-1), DPPH (30.1±0.8 to 33.9±1.4mgAAE100g-1), and Folin-Ciocalteu assays (58.3±2.6 to 142.0±1.6mgGAE100g-1) of this honey. However, phenolic compounds and minerals showed high stability and in some cases, significantly increased after the simulated digestion, presenting a bioaccessible fraction that ranged from 78.2±6.4 to 174.38±6.82% and 94.0±4.3 to 220.5±3.4%, respectively.

Therefore, these honey constituents may be considered highly bioaccessible and potentially bioavailable. Additionally, the correlation between the investigated parameters suggests that other honey constituents could also possibly affect antioxidant capacity of this honey.

In conclusion, the bracatinga (Mimosa scabrella Benth.) honeydew honey can be highlighted as an important natural source of bioaccessible polyphenols, besides presenting highly bioaccessible minerals in its composition, maintaining a satisfactory antioxidant capacity.

Thursday, August 10, 2017

Cuban Red Propolis and Brazilian Green Propolis May Help Treat Laryngeal Cancer

Mechanisms underlying the cytotoxic effect of propolis on human laryngeal epidermoid carcinoma cells

Nat Prod Res. 2017 Aug 8:1-7

Propolis has been used as a traditional remedy for centuries because of its beneficial effects, including anticancer properties.

The aim of this study was to compare the cytotoxic mechanism of Cuban red propolis (CP) and Brazilian green propolis (BP) on human laryngeal carcinoma (HEp-2) cells. Cell viability, leakage of lactate dehydrogenase, fluorescence staining, mitochondrial membrane potential (ΔΨm) and the expression of pro/anti-apoptotic genes were assessed. Cell viability and cytotoxic assays suggested a dose-dependent effect of CP and BP extracts with a possible association of intracellular reactive oxygen species production and decreased ΔΨm. Both samples induced apoptosis via activation of TP53, CASP3, BAX, P21 signalling, and downregulation of BCL2 and BCL-XL. CP exerted a higher cytotoxic effect than BP extract.

Our findings suggest further investigation of the main components of each propolis sample, what may lead to the development of strategies for the treatment of laryngeal cancer.

Wednesday, August 09, 2017

Honeydew Honey an Important Natural Source of Bioaccessible Polyphenols

Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys

Food Res Int. 2017 Sep;99(Pt 1):670-678

Honey is a product traditionally consumed due to its possible health benefits promoted by natural antioxidants. However, few studies have evaluated the effect of in vitro gastrointestinal digestion on these compounds in honeys.

To improve the knowledge of this subject, the present study aimed to investigate the influence of simulated digestion on the stability of antioxidant capacity (FRAP, DPPH, and Folin-Ciocalteu assays), phenolic compounds (LC-ESI-MS/MS), and minerals (CE-DAD) in Mimosa scabrella Bentham honeydew honeys. The results show that the digestive system, mainly after duodenal digestion, significantly decreased the antioxidant capacity assessed by FRAP (410.3±18.3 to 564.7±8.4μmolFe+2100g-1), DPPH (30.1±0.8 to 33.9±1.4mgAAE100g-1), and Folin-Ciocalteu assays (58.3±2.6 to 142.0±1.6mgGAE100g-1) of this honey. However, phenolic compounds and minerals showed high stability and in some cases, significantly increased after the simulated digestion, presenting a bioaccessible fraction that ranged from 78.2±6.4 to 174.38±6.82% and 94.0±4.3 to 220.5±3.4%, respectively.

Therefore, these honey constituents may be considered highly bioaccessible and potentially bioavailable. Additionally, the correlation between the investigated parameters suggests that other honey constituents could also possibly affect antioxidant capacity of this honey.

In conclusion, the bracatinga (Mimosa scabrella Benth.) honeydew honey can be highlighted as an important natural source of bioaccessible polyphenols, besides presenting highly bioaccessible minerals in its composition, maintaining a satisfactory antioxidant capacity.

Tuesday, August 08, 2017

Vietnamese Stingless Bee Propolis May Help Treat Pancreatic Cancer


Chemical Constituents of Propolis from Vietnamese Trigona minor and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line

J Nat Prod. 2017 Aug 7

The ethanol extract of propolis from the Vietnamese stingless bee Trigona minor possessed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells in nutrient-deprived medium, with a PC50 value of 14.0 μg/mL.

Chemical investigation of this extract led to the isolation of 15 cycloartane-type triterpenoids, including five new compounds (1-5), and a lanostane-type triterpenoid. The structures of the new compounds were elucidated on the basis of NMR spectroscopic analysis.

Among the isolated compounds, 23-hydroxyisomangiferolic acid B (5) and 27-hydroxyisomangiferolic acid (13) exhibited the most potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions, with PC50 values of 4.3 and 3.7 μM, respectively.

Monday, August 07, 2017

Signature Compounds of Manuka Honey - Leptosperin, Lepteridine and 2-Methoxyacetophenone

New research advances Manuka honey definition

Voxy, 8/2/2017

Comvita (NZX:CVT) announced today research supporting industry and government moves to improve the existing definition for Manuka honey. The research paper has been peer reviewed and published in the Journal of Food Chemistry. The research describes how unique signature compounds can be identified and used to profile genuine Manuka honey.

Researchers examined a range of nectar and honey samples, identifying and measuring several potential honey marker compounds. The compounds were evaluated based on their uniqueness to Manuka, relative abundance, stability, and potential for adulteration. The most significant signature compounds of Manuka honey were found to be leptosperin, lepteridine and 2-methoxyacetophenone...

Sunday, August 06, 2017

Honey, Royal Jelly Component Defensin-1 Boosts Wound Healing

Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo

Sci Rep. 2017 Aug 4;7(1):7340

Royal jelly (RJ) has successfully been used as a remedy in wound healing. RJ has multiple effects, including antibacterial, anti-inflammatory and immunomodulatory activities, in various cell types. However, no component(s) (other than antibacterial) have been identified in RJ-accelerated wound healing.

In this study, we demonstrate that keratinocytes are responsible for the elevated production of matrix metalloproteinase-9 (MMP-9) after incubation with a water extract of RJ. Furthermore, the keratinocyte migration and wound closure rates were significantly increased in the presence of RJ extract. MMP-9 production was reduced significantly following proteinase K treatment but remained stable after heat treatment, indicating that active component(s) have a proteinous character.

To identify the component responsible for inducing MMP-9 production, RJ extract was fractionated using C18 RP-HPLC. In fractions exhibiting stimulatory activity, we immunochemically detected the bee-derived antibacterial peptide, defensin-1. Defensin-1 was cloned, and recombinant peptide was produced in a baculoviral expression system. Defensin-1 stimulated MMP-9 secretion from keratinocytes and increased keratinocyte migration and wound closure in vitro. In addition, defensin-1 promoted re-epithelisation and wound closure in uninfected excision wounds.

These data indisputably demonstrate that defensin-1, a regular but concentration variable factor found in honey and RJ, contributes to cutaneous wound closure by enhancing keratinocyte migration and MMP-9 secretion.

Saturday, August 05, 2017

Bee Venom May Help Prevent Cancer

Anti-mutagenic and synergistic cytotoxic effect of cisplatin and Honey Bee venom on 4T1 invasive mammary carcinoma cell line

Introduction: Honey Bee Venom (HBV) has various biological activities such as inhibitory effect on several types of cancer. Cisplatin is an old and potent drug to treat the most of cancer. Our aims in this study were determination of the anti-mutagenic and cytotoxic effects of HBV on mammary carcinoma.

Methods: 4T1 cell line was cultured in RPMI-1640 with 10% fetal bovine serum, at 37°C in humidified CO2-incubator. The cell viabilities were examined by MTT assay. HBV was screened for its anti-mutagenic activity against sodium azide by Ames test. The results were assessed by SPSS software and one-way ANOVA considering P < 0.05 level of significant. Results: The result showed that 6 ug/ml HBV, 20 ug/ml cisplatin and 6 ug/ml HBV with 10 ug/ml cisplatin can induce an approximately 50% 4T1 cell death. 7 mg/ml HBV with the inhibition of 62.76% sodium azide showed high potential in decreasing the mutagenic agents.

Conclusions: MTT assay demonstrated that HBV and cisplatin can cause cell death in a dose-dependent manner. The cytotoxic effect of cisplatin is also promoted by HBV. Ames test results indicated that HBV can inhibit mutagenic agent. Anti-mutagenic activity of HBV was increased significantly in presence of S9. Our findings reveal that HBV has cancer preventing effects.

Friday, August 04, 2017

High Levels of Methylglyoxal Found in Nordic Mire and Forest Honeys

Screening bioactivity and bioactive constituents of Nordic unifloral honeys

Food Chem. 2017 Dec 15;237:214-224

The objective of this study was to screen the antibacterial and antioxidant activity of thirty nine honey samples from Finland, Sweden, Norway and Denmark. Their physicochemical properties were analysed, antioxidant activity was evaluated by DPPH assay and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus was assessed by microdilution assay.

The honey samples obtained were buckwheat, caraway, clover, dandelion, fireweed, heather, lime tree, lingonberry, rape, raspberry, sweet clover, willow, mire, honeydew and polyfloral. Eleven honey samples showed high antioxidant activity. With 15% honey dilution, three unifloral honeys had over 85% inhibition against growth of P. aeruginosa and ten honey samples against S. aureus.

The buckwheat, raspberry and honeydew honeys showed the highest antibacterial and antioxidant activity. An unexpectedly high amount of methylglyoxal was found in mire and forest honeys. Some phenolic compounds are shown to be plant species-specific floral markers due to their appearance in specific unifloral honey samples.